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AN ANALYTIC METHOD TO ACCOUNT FOR DRAG

IN THE VINTI SATELLITE THEORY

J. 5. Watson
G. D, Mistretta
N. L. Bonavito

ABSTRACT

In order to retain separability in the Vinti theory of earth satellite motion
when a non-conservative force such as air drag is considered, a set of varia-
tional equations for the orbital elements are introduced, and expressed as func~
tions of the transverse, radial, and normal components of the nonconservative
forcas acting on the system. In this approach, the Hamiltenian is preserved in
form, and remains the total energy, but the initial or boundary conditions and
hence the Jacobi constants of the motion advance with time through the varia-
tional equations. In particular, the atmospheric density profile is written as a
'fitted’ exponential function of the eccentric anomaly, which adheres to tabular
data at all altitudes and simultaneously reduces the variational equations to
indefinite integrals with clesed form evaluations, whose limits are in terms of
the cccentric anomaly. The values of the limits for any arbitrary-time interval

are obtained from the Vinti program.

Results of this technique for the case of the intense air drag satellites San
Marco-2 and Air Force Cannonbsall are given. These results indicate thai the
satellite ephemerides produced by this theory in conjunction with the Vinti pro-
gram are of very high accuracy. In addition, since the program is entirely
analytic, several months of ephemerides cun be obtained within a few seconds of

computer time.
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INTRODUCTION
Vinti (Reference 1) has shown that if a satellite orbit is described by means
of osculating Jacobi a's and 5's of a separable problem, then a perturbing

force F makes them vary according to

a,=F 37/, B=-F:3F/2q. (K=1,2 3.

Here T is the position vector of the satellite and F is any perturbing force,
conservative or non-conservative. If F is the force of air drag, the interaction
of drag with oblateness makes it desirable to obtain variations to the order
drag x J,, where J, is the coefficient of the second zonal harmonic of the
Earth's gravitational potential. The physical reason for carrying these deriva-
tives through order J, is the strong variation of drag with perigee height. In
the present paper, we have been able to account for this effect without intro-
ducing the J2 terms into 3T /25 and ¢7/9a,. The logic behind our approach
requires a rathce careful exposition which we shall go into in detail in Section 1,
The essence of the method is that for a given time interval, one always does
both a drag free calculaticn, and an oblateness free calculation with drag, and
that these two calculations are done in a self-consistent iterative manner such
that the mean orbital elements never go far astray. The appropriate criterion,
to make sure that the drag-oblateness interaction is being properly accounted
for, is that the perigee height corresponding to initial and final orbital elements

of a given interval shall not change by more than some predetermined amount.

The comptlexity of those papers which attempt to handle the oblateness~
drag interaction in a straight forward manner (References 2, 3) illustrates the

desirability of finding a new approach. That is the purpose of this paper.



1. STATEMENT OF THE PROBLEM

In this paper we consider the motion of an artificial Earth satellite in the
presence of air drag and the Earth's gravitational potential. In contrast to the
classical methods of numerical integration, our approach will be to present a
quadrature algorithm employing analytical expressions for the variation of
orbital elements produced by 2ir drag. These expressions are well-defined
over expanded subintervals of the solution, and produce accurate agreement
with profiles of tabular density. This procedure then allows a flexibility in the
selection of end points of the subintervals, which in turn insures a minimum
error bound on the required analyticzl function. For convenience we shall
henceforth refer to the algorithm as the BMW (Bonavito-Mistretta-Watson)
aerodynamic method. In this method the effect of oblateness is accounted for
by the Vinti Spheroidal Theory (Reference 4). The changes due to atmospheric
resistance for a nen-rotating sphere are accounted for by the solutions of the

variational equations without oblateness (Reference 5).

Normally, one would wish to represent the variation of atmospheric density
by an exponential whose power is a function of the difference between the satel-
lite height and the altitude at a predetermined density (Reference 6). Such a
representation is usually valid only in a neighborhocd of this boundary value.

The neighborhood or region over which this density representation is in agree-
ment with tabular data such as provided by the U. S, Standard Atmosphere Sup-
plements, 1966, (Reference 7), is one in which the density scale height is observed
to vary in an approximate linear fashion, Throughout our calculations a set of
such regions is chosen to meet this requirement. In addition, the initial or

houndary value of the atmospheric density for eacl: of these regions is also
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suppliéd by the Supplements. Such a representation for atmospheric density
would,except under speéial conditions, exclude closed fcrm integration of the
variz;ltional equations. To avoid this difficulty, we approximate the atmospheric
density variation by an expressioﬁ which is made to adhere closely to the
numerical values of the aforementioned model. By adjusting or advancing
boundary conditions over several selected arcs or layers of atmospheric density,
we produce a profile that closely agrees with the tabulated data for all heights,
The degree to which ou: results compare with tabular values (Spring-Fall model,
1100°K exospheric temperature) from the U, S. Standard Atmospheric Supple-
ments, 1966, is shown in Table I. Between the heights of 205 kilometers and 650
kilometers, the discrepancy is less than two percent. From symmetry consider-
ations, these sets of boundayy cenditions for one r'epresentation can be deter-
miﬁed during the first half revolution of an orbit. These density variation pro-
files then are held fixed until such time as the perigee height changes by some
predetermined araount. At this point the boundaf,yseonditions are redetermined
over the first half revoiuti(m away from perigee, corresponding to a chozen
epoch, This again produces a total density profile that is in close agreement
with the values from the Supplement tables. Experience indicates that given a
criterion of one kilometer change in perigee, this redetermination is not neces~
sary for nearly two months in the cases of the San Marco-2 and Cannonball
satellites, but becomes more freguent near the end of the lifétime of each

spacelraft.

In our final expressions for these variations, rotation of the atmosphere
i{s accounted for while an oblate atmosphere is considered in a partial fashion

by including the oblateness narameter in the exponential term of the density
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variation, Although the variational equations do not contain the effects of oblate-
ness explicitly, the interaction between oblateness and drag is accounted for
implicitly during the computational procedure in the following manner (See
Figure 5).

1. From the initial conditions calculate the Izsak elerients of the Vinti
Spheroidal Theory corresponding to that eopch.

2. With these, together with tabular data or. air density, obtain the density
variation profiles and corresponding values for changes in the elements arising
from air drag for those altitudes during the first half revolution past perigee
and beyond epoch, corresponding to these density profiles.

3. For any desired time interval, calculate using oblateness only (without
drag) T and T and the value of the eccentric anomaly E, at the end of this
interval from the inijtial given set of Vinti or Izsak elements.

4. For this same time interval, calculate from drag only (without oblateness)
the total change in the original or given set of Vinti elements, using the value of
the eccentric anomaly obtained in step (3) as the upper limit in the analytical
expressions for these changes in the elements arising from drag. The total
change in the elements from epoch to this time, produced by drag only, are
cbtained by multiplying the revolutions to this point in the orbit by the sum of
the individual (analytically expressed) corrections or changes to the elements '
obtained.in the first half revolution.

5. Add these changes arising from drag of step (4) to the epoch values of
the Vinti elements.

6. For the same time interval, repeat step (3) with the new elements ob-

tained in step (5).
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7. Comparethe last twovalues of eccentricanomaly. Iftheir difference isless
than some arbitrary preassigned small positive number ¢, then the differences
between the original noniterated set of elements a(._°) » B(9) (= 1.2,3), and the

iterated set ag"’,@f"’ approaches a constant, That is, when

Et(’n) _E‘(jn"l)

(n) <&
n

l?‘u

then,
La = (a9 = al™My = H((" D, E(" D)) ~ constant,

Similarly,

AL = (BLo)Y - B(nYy = GBI 1), E("" Dy ~ constant
where (n) is the iteration number. Note that the functional representation of
the variational) equations solution on the right hand side contains the previous
iterated values of the elements and the eccentric anomaly,(a(""1), (1)
E{™ D).

8. If the above criterion on the eccentric anomaly upper limit is met, then
we accept the 2{"), B§{™ as the new Vinti elements that describe the orbit from
the original epoch to the end of the given time interval.

9, If the criterion is not met, repeat steps (3) through (7) always utilizing
the iterated values of the Vinti elements in the calculation of step (3).unt!1 such
time as

E 1(1") ~ Etsn-l)
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In functional terms, if by ¥ we denote the elements of the Vinti Satellite
Theory and f(x, t) repr'eé.ents the Vinti Spheroidal Method (oblateness only)
solution which for a given tﬁne interval yields a value of the eccentric anomaly
E, corresponding to a time t at the end of that interval, and glx, {(%,t)] repre-
sents the correction arising from drag plus the oblateness calculation; then for
a fixed value of time t, the above algorithm is an iterative solution for X using

the equation

fx t)y=felx f(x Ol t)
in a self—consisfent method.' Thus, for a fixed time interval

P — (1 (1 —_ (1} ()
(ao' po)nblateness —.El(,ll? (Aa ! A'B )drag (a - B )oblntlzness

- (n=1),
- El(.ln) - (Aa‘2). A‘B(Q))drnz e 7 (a(n l)' 'B )oblateness

- E:Jn) — (Aa(“"’ AB(“)) - (a(n)' ﬁ(n)).

drag

‘This algoritim converges when

E(n) _ E(n'l)
__U___”__U___ <€,

™
EU
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Ii. AERODYNAMIC DRAG VARIATIONAL EQUATIONS

From Sterne (Reference 5), the equations for variations of the orbital ele-

ments due to air drag and without oblateness are given by

a3\1’2 3
at ¢ 2 (7;) i [Re sinv+T(1+ecosv)]

de a 1/2 -
dt - (Z) Y1-e? [R sinv + T(cos V+COSE)]
di W( r cosy )
di -~ 2yy - o2
na?¥i-e (1)

-W( r cosi siny )

- 0 .
nal ¥1-e? sini

215
~
7]
o
3
G
w
-
o]
-
e’

S

ry .
o) ey [0 E e
= n+R{*~——=L cosv-—|~-T nac

Here ¢ is the argument of latitude, r = a(l-ecosE), p = a(l-e?), and
n=ul2 273/2 where p is the product of the gravitational constant and the sum
of the masses in the two body problem, E and v are the eccentric and true
anomaly respectively and i is the inclination. The drag perturbing force is
resolved into the following components: |
R is in the direction of the positior vector from the force center to the satellite.

T is perpendicular to R, lies in the orbital plare, and is pesitive in the direc-

tion of motion.
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10
W is mutually perpendicular to R and T and completes a right handed set of
component directions.
In terms of the eccentric anomaly, these are given by
= ..% Cngaepv sinEg—%
1 . 7y 2 0
T=--C, Ao ey gpy |1 g oecesEY | dE
2 m (1 - e2) dt
(2)

W= .._; CD%GPG)SV;L-VQ a3/ 2
2 dE
x (1 - e cos E) )’écos¢—dt.

Here, w, is the angular velocity of rotation of the Farth, ¢ is the atmospheric
density. A is the projected area of the satellite, m is the mass of the satellite,
and Cp is a drag parameter. S is a parameter related to the orbital inclina~

tion and is given by
S=sin? i. 3)

The velocity of the satellite relative to the atmosphere can be written in vector

notation as

-(1)’)( Te

|

V=

Neglecting the term of order wf in the magnitude of V to be employed in (2),

one obtains the expression given by Sterne to be

AL/2 - -
v:(_'f.) (1 + e cosEYy Y2 (1 - e cos E) 2 (1 4+ e cos E) - d(1 + e cos E)]-
a .
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where
- ~1/2 372 2,172 172
d=owpu a*’ %(1 - ey (1..3)' sgn a,

where -sgn a, = +1 or -1 according to whether the orbit is direct or retrograde.

From (3) above we have

..‘_i_§: 2sini cos i_d_f..
dt

dt

or
ds _ — di
PTIRAR Sl

Inserting di/dt from (1), we can then write the variation of the inclination

parameter as

das _ 2YS(1 -S) r¥Wcos Y
dt "’,t:_z;l‘l-ei

Let us now write the right ascension of the ascending node and the argument of
perigee as ,33 and ,82 respectively. In addition, the mean anomaly is related

to the time of perigee passagef by M = n(t + 5;). Differentiating, we have that

ds 1 |[dM dn
& °n [‘;““5‘ —-fﬂ

t d dt
where
dn_ _3 725572 da
dt 2 dt

Using the above results, together with {2), the solutions of the variational equa~

tions due to air drag without oblateness are given from (1) by
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1

E -
Ae:-CDA a(l - e?) ‘f 2p(1+ecos E) 12 [l_d(l-ecos E)
m (1 + e cos E)

x [cosE~_c25 (1-¢e*'(1~ecesE)(2cosE-e-ec? cos? E} dE

C,A 4 2m1sa Ea -
- “’s:(l"e) ) Y1 -8 p(liecosEYy 12
vE
1

AS = -

5/2

x (1 -ecosEY' " cos?y[(1+ecos)~d(1-~ecosE) dE

4)

E

- - 2

A33=-%CD—£—# 1/235/20):(1__02) 172 J psiny cos
E

1

x (1 +ecos EY Y2 (1 -eccosE)*? [(1+ecosE)-d(l-ecosE)] dE

1

88, =-Le,Bacta ooty [ in. e T

273 D;a (1 -9 ,o-esxn,bcosw_n_ -Ssgn a,
E

1

x (1+ecosE)Y 2 (1-ecosE)Y%?[(1+ecosE)-d(l-ecosE)

+2(1 + e cos E) V2 (1 - e cos E) 2 sin El(1 + e cos E) - d(1 - e cos E)}

x [1--e2 -—dz_(l-ccosE) (2'—-e2-ecosE):‘}dE
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and

psy, =2 B3ty 8y - 1= AB, + YT TS 1B, senay)
2 a ! n 2 o

£
CDA ae 2

4— p(l-ecosE)?2 (1 +ecos E)_L’2
m n :

x [(1 + e cos E) —=d(1 - e cos E)} sin EdE.
Here E, and E, are the values of the eccentric anomaly at arbitrary times t,

and t, respectively and the time t is usually taken to be the time of epoch.

The solution of (4) will be congidered in Section IV after describing the form
{» of o in Section Ll

I, ATMOSPHERIC DENSITY REPRESENTATION

At this point we consider the expression for atmospheric density variation

; given by King-~Hele (Reference 6). An expression for the atmospheric density

as a function of the eccentric anomaly is given by

2 L - l'p
] p= pp{l + b(r - rp? } exp (- ) )
. 2 2 X “ 5
= p,{1 + bx¥(1 - cos E)°} exp -__(lwcosE)j )
C H
. . ) S P
# wiiere x = ae, Hp = density scale height at perigee which in equation (5) is

assumed to vary linearly with the perigee height.

Let us now write equation (5) in 2 more general form so as to represent

the atmospheric density variation over any interval within the orbil in which

a5

i
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the boundary conditions are known. A generalization of (5) is desirable lor our
purposes to insure that the resultant analytic atmospheric model rigidly adheres
to a tabular set of densities at all altitudes. To obtain this generalization, let
the subscripts L and U refer to a lower and upper point of an interval respec-
tively. This interval [EL, EU] is judicicusly chosen (by a method discussed
later in this section) and allows either

O0<L <7 and OSEUSTr

or
7r_<_EL$217 and 77_<_F.Ug2n.
Letting
r, =a(l -ecosE ry = a(l ~ecos K,
and
Toin = min(r,, ry) Trax = max{r;, ;)

permits o to be given by an expression of the type of equation (5) over the re-

stricted domain [E, , E] by

2 P Yain
p(r)y=p {1 + b, U) (r -1 ; 3} exp(— __'"..'._> T STST

H

or

A
i
A
(]
Cnd
(=)}
R

' p(E):pL{l+b(L.U)x2(cosEL-cosE)2} exp{_t_’i(cosEL_cosE)}. E <E<E,

where £, and H; are available from density tables, E, and E are available
from the orbit theory (as are r, and r;), and b(L,U) is derivable from (6) by

setting o(E,) = p, which yields b(L, U) = b(L. Ui py, gy Fs T H ).
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If equation (6) abuve is substituted into (4) and the resulting expressions

are expanded in powers of the eccentricity e, this yields terms of the form

E
2
f sin" E cos” E exp{- (x/H ) (cos E_ - cos E)} dE
£y

where m 2 0, n2 0, and H, is held constant-over the range of a subinterval of
integration and x is held constant over the entire range of integration, For the
case n= 0, this expression can be evaluated in terms of Bessel functions for the
limits (0,7). Theparametern, however, does assume the value zero; and, in
addition, it is desirable to alter the form of the integrand so as to insure that
the expression under the integral sign is integrable over any interval while
simultaneously maintaining its theoretical physical content. In short, the vari-
ational equations cannot be solved by the Fundameutal Theorem of Calculus
since an antiderivative of sin® E cos™ E exp { -(x/H_) (cos E; - cos E)}, (n #1),

is not expreesible in terms of elementary funciions,

To achieve this purpose let us now consider the following: rewrite the
expression for atmospheric density (5) as
pP(E) = p, {1 4+ b(L, U) x?(cos E_ - cos E)z] bl(ﬁ) exp[b,(E) - E!
E ZE<E (7)
where b, (E}, b, (E) are arbitrary functions of E which will be chosen to pre-

serve clesed form integrability of the variational equations (4) while retaining

near complete numerical agreement with the exponential term of King-Hele's
expression for p (E).

The selection of the two functions b,{E}, b ,(E) between an upper limit of

integration E, and a lower limit E; will be made in the following manner.
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Consider the interval [E¥, E¥} subdivided into a collection.of n nounoverlapping
subintervals I,, (£=1,2,...,n), defined by the partiticning
E; = x

< < < =ES
0 < %, e €X X EQ.

For any subinterval I, = (xg_ s Xz], define’
by(E) =
b, (E) = dy

for x; <E<x;

where Cyy d,ﬁ are constants, The determinstion of co,d; will be accomplished
by applying the technique of classical weighted least squares. In this manner

the definition of b (E) and b,(E) over the domain [E%, E’:‘ are the step functions

b, (E) = ¢, Xqg £ E XL x,
=c, X .y SE<x,

b, (E) = d, Xq $£E < x,
=d, x, £E < x,
=d_ x.-.; SE<x..

U - B WA £ A e
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Consider observational data Y; generated within I, by repeated evaluatijon

of the function
h(E,) = expi-l(cos E, - cos E;)]
where (0 = x/HL and Xy = Ei < X7 To define the pseudo-regression situation
governing our estimation problem, consider the implicitly linear, exponential
model ‘
Y, = Bye, exp(5,E)  i=1, 2.0, m 8

relating the independent variable E and the dependent or response variable Y
that, unlike the general regression response variable, displays no random vari-
ability. Hence, the random variables ¢, denoting the dispersion characteristics
of Y, about the theoretical regression line become meaningless in the curve
fitting analysis. That is, the random variables ¢, are degenerate in the sense

that their probability density functions p; ) are given by

p(e;) =1 €, =B

0 otherwise

1"

where B, can be considered a "fitting bias" at E = E, since
E(e;) =B, Var(e,) = 0.

While all practical statistical properties of the regresasion analysis become
lost, the technique is not degraded as 2 numerical tool for approximating with
great precision complex functional forms over restricted regions with relatively

simple functicns,

e e B T e 1
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T> display the implicit linear form of (8), we take the natural logarithm of

both sides of (8) and obtain the equivalent form . _ 4

InY, =Ing, + 5, E, + In €,
or
' Yizﬁ;‘f,ﬁin+€; (i:l|2»“'0m)¢

If nonnegative weights o, , w,, ..., w,are svailable and y! are evaluated
fromy; =Inh(E )=~ G(cosxy_, —cos E ), then the well known result

-1 m . m -1

m o - ;

. . ’ i
b, Z :“’i 2 w; ¥; -b, 2 Wy 2 w, E; !
1 1 1 i

i

{

1

are the values of ﬁ;, B, that minimize the weighted sum of squares .

Zm: wiG:QZ i @y (Y;'/B;’,Bin)"'.
1 1

Thus, b; = exp (bj) and b, are the classical weighted least squares estimated
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of 3,,5, respectively. .
The selection of the mesh points over an interval of integration [E’{ s E’;] o
is obtained through an automated search approach utilizing the weighted least

squares process previously described, This technique selects subintervals of

A

maximum size while retaining a user selected error tolerance between the true .

.,-,

and predicted function. : S e

Furthermore, if one sets E¥ = 0, E% = 7, and derives a set of coefficients

. TR LR PO

for the n selected subintervals in the manner previously defined, the functions




19

h(E) and e (E) will have been fitted for all values of E over which x has been
assumed constart. This is true since h(E) is a periodic function with period 27
and in the fundamemal period (0, 2 7) is symmetrically distributed about the

axis of symmetry E=7 .,

With the use of more general exbression for density (p), the variational
equations (4) integrated between E% and E¥ where 0 < EX <E% < 7, take on the

following general functional form

n-1
Xje1
k= {t,,;exp(d;,;E)} dG, (E) (k=1 2 -+, 6)

je0 ‘j

Aq

where dG, (E) = g, (sinE, cos E) 4E. Having fitted h(E) from (0 -7), the inte-
gration of the variational equations between any tw6 arbitrary limits E¥> 0,

E¥ > E%, takes the general functional form

Aq, = E LI {t,-,,1 exp [d,'n E} dG, (E)

,-.-b xj
n-1 27ex .
, ,

+ Z P J‘ {t;,; exp [d; . El} dG, (2)

jfo ‘ 27'_xi+l '

9)

FF,;mod 2
+ t; exp (d; E) dG, (E)

ng

(* x

n

+ J ty exp (Y E) dG, (B) (k=1,2 -, 6)

E] mod 27
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where my, t=1,2,... » 2n), are nonnegative integers; t;, tk', d;(j =1,2,.4.,

n,(k=n+1,n+2,,.., 2n) are functions of c;, dj; £ is an integer between 0

and 2n -~ 2: 7; is an integer between 1 and 2n - 1; the grid points XoggsX 4000

X,. are defined from X, Xy, ..., X,; and (t*, t*) may be either (tg, t,),
(teyt.), (e, 1), t.) depending upon the values E¥ mod 27, E¥ mod 27, The
logical structure of (13) and the determination of the above parameters is too
lengthy to be given her; but is presented in Appendix for completeness, It must
be emphasized that (13) is general for all computations, but is valid only while
x is assumed constant, whereby a new fit is obtained and new constants are

determined to integrate (4) by the general form (9).

Using these results we can now solve the density expression for the value

of b within each of the selected or fitted intervals from the expression

b(L. U) = -pp, + py expllry - 7 V/H ]

PL(TU - rL)Z
where the subscriots U and L still refer to the upper and lower points of an

interval. For example, o is that value of density at the initial point of the

L
intérval which is known fror: the tables, and the corresponding density scale
height H, can then be computed. The end point r, is known as a function of E.
Therefore H_is also ‘advanced' in a similar fashion as p; during the fitting
of the exponential. The above method of fitting King-Hele's expression over
several intervals of an orbit is sufficient to 'reproduce’ the tabular model

atmosphere with a discrepancy of less than two percent, and simultanecusly

yield closed form integrable equations for the variation of the elements.
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Table I provides a compilation of an estimated versus a standard model
atmosphere. The estimated densities siven in column 3 were obtained via equa~
tion (7). The standard model atmosphere given in column 2 was obtained by
using an algorithm which generated as closely as possible specific tables given
in Reference 7. The standard model atmosphere used here closely resembles
the Spring-Fall model with an Exospheric Temperature of 1100° Kelvin. The
first column of the table is given in kilometers, and the remaining three col-

umns are given in grams per cubic kilometer.

1V, SOLUTION OF VARIATIONAL EQUATIONS

In light of the analysis done in Section III above, we now return to the vari-
ational equations (4). If we now combine the radical terrﬁs in (4), we obtain a
set of expressions containing the forms (1 £x)", and (1L £x) " ,. where n=1/2
and y = €% cos? E. If one assumes that x will never get too large, that is, for

drag satellites, e will not be larger than 0.2, then the above terms can be ex-

parded as
(1¢x)"=1¢nx+2_(“_2:3_),3,
and
(lix)-“=1'+'nx+n(n—2+1.)x2. - (10)

Adopting expression (6) for atmospheric density variation, the variational equa-

tions are then reduced to solving a set of indefinite integrals of the form

E
k, J ’ exp{~(x/H ) (cos E_- cos E) cos{ E sin® EJE (11
Ey
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where k; is simply the cons@nt coefficient of eacn <;orrespondi11g integral, If,
on the other hand, the eccentricity is some\'vhat larger than normal, say around
0.5 or so, then it will be necessary to include several more terms in the expan-
sion (10) above. This however is 2a algebraic problem, and coraputationally
épeaking has only the effect of changing the overall coefficients, {ki} , in the
final algorithm. The integrals are still of the form (11) above. Utilizing the
fitting described in section I, the exponential of the density can now be repre-

sented as
b (E) exp[by(E)-El

in which b, (E) and b2 (E) are determined for one or several segments within an
orbital revoiution. Results indicate that b; (E) and b, (E) remain fixed for a
considerable length of the satellite's lifetime. Refitting becomes necessary only
when a and e change appreciably. This is found to occur mere frequently near
the end of the salellite's lifetime. In any event, the fitting procedure is instan-

taneous, and the calculation proceeds without interruption.

If in the drag acceleration one desires to express the density exponential
so as to involve the product of J,, the coefficient of the Earth's second zonal
harmonic and the air density, one can follow the procedure of Sherrill (Refer-
ence 3) and write this term as

2 1~ 2 ’ ]
- 1 - C 7 2
exp{ (x/HL) [( ecos E) + —232 (————-——-1 T o oS E>+ €opm }J»

where c? = d, R'f. Here R, is the value of the Earth's equatorial radiys, ogis
the equatorial radius of the oblate spheroid which passes through the ihitial

perigee point of the satellite, and the flattening € = 1/2988. Since this addition
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is accounted for rather simply by the fitting procedure, the cross term is re-

tained in the exponential. Using these results, equation (11) is rewritten as

F2 5
b, (E) expb,(E)-E] cos  E:sin® EdE. (12)
E,

Here p takes the values 0, 1, and 2, When p =0, 2 takes on all values from
zero ihrough twelve. When p = 1, 4 goes from zero through eleven; and when

p = 2, Z ranges from zero throvgh ten. For the case p = 0, expression (12) re-

B R R Ok A

duces to
s g 4
I, = by(E) exp[b,(E)-El cos"E dE .
3 E!

When £ is even (£ = 2n), this becomes

B

b, (E)
120 (20! explb,(E)-E)
22n (n'.)2b2(E) (13)

% . n-1 . . . . . £
b,(E) cos(2n-2j)E+ (2n-2j)sin(2h-2j)E |
] s 2explo, @) E) ) DL
= (2“-—]).). bzz(E)+(2ﬂ—2j)2 gl
¥ When £ is odd (£ = 2n+1) we have

bE) | < 2 1!
et 7 @n+ D! explb (E) El
° r |Lg GreT-DT 2

E
b, (E) cos(2n~2j + DE + (2n - 2j + 1) sin@2n-2j + DE 2 s

x

b (E) + (2n - 2j + 1)?

Ey
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For p = 2 expression (12; becomes
¥4 F2 »

I; = b,(E) L exp{by(E)-E] cos” E sin? EdE
1
E2 r £ 52 - A

= b (E) expby(E)'E] cos” EdE -~ f expib,(E)-E] cos™*2 EJE |. .
El El

The calculation here is identical to that for I;g, with results given by equations

(13) and (14) for % even and odd.

Finally, for p = 1, we have from (12)

» rE2 . P
I;’ = by(E) J exp(b,(E) E] cos” EsinEdE. .

Ey

An integration by parts reduces this to

‘ r " L4y o [F2
£ ~exp b,(E)-E] cos F.
I, = b(E) | —
4+ 1
E,
(E) 2
+ B exp b, (E)-E] cosV* EaE
£+1
i

'f, .
Here again, the integral part of I; is given by equations (13) and (14) for the cases

that (£ +1) is even or odd. Let us now define the following:

ft

K

by(E) p (1 + b(L. U) a’e? cos? E,)

0
Ky = - 2x, cos E
= by(E) £ b(L, U ale?
C}: 0 C;:O. Cg:l, C£=2e,
3 3 _ 7 _3
C;: -2'92. Cé’-‘e. C.ll——8-24. Cé—zes,
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Using the above quantities, we now write the solutions of the varjational equa-
tion (4) as

Aa?
Aa = - S {1, - 2d1, + d* L],
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C.Aa
Sl naieny - a2 - e 1,
2 m
+ 26"18 -e(l, + L)

+ d? (2e"1llb eI + I, N

A
(_:_'L_ a%/2,"V2 (1 - 2y 172 § yT =5 sgn a,

{cos? 3,(1, - 2I,) + €2 cos? 3,1,
-2(1 - e*)? 5in 3, cos B, (I, ~ el ,)
+ (1 ~e?)sin? JAPY PP d(cos? F (T, = 21453
+e?cos? I -2(1 - e®)"2 sin B, cos B,(1,,

- el ) + (1~ e?)sin® By,
(15)

C A
_;_ _x!;_asn“-mw' (1 -&y1z - )12 cos 24,

x (I, —el;,) - (1 - e2) sin B, cos 5,1,

+sinf, cos B,(I, ~2I) + e? sin B, cos 3, 1,

- d((1 - eH)2 cos 28,1, - (1 =€) sin B, cos B,1,,
- e(l - e*)!2 cos 28,1, + sin B cos B,(I,, - 21,,)
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C.Aa -
=L —— et - ey 201 - @) (1 - d1y)

JaYe 2 5

+d((@® = 2) 1, + el,) - d?((e? - 2) I,

+el ) - y1- S sgn 2,88,

and

DS =~ p(- 2‘:‘)'3"2 [(1 -~ )/ &3, +sgna; Y1 -8 A34)

C. Aa

D \ Aa
= (112-d1,,§ Y3

(to + I:Jl)'
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V. RESULTS

In order fo test the BMW theory, two heavy air drag satellites with some-
what dissimilar characteristics are considered. These are the Italian San
Marco-Z% and the U.S. Air Force Cannonball (OAR-901). Data on these spacecrafts
is as follows:

San Marco-2:

Mass m = 129.27383 kgm.
Projected Area A = 3425.3397 cm?,

Drag Coefficient C = 2.1

-

e e e .
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Initial epoch: April 26, 1967, 10 hours, 12 minutes.
Initial conditions (Inertial Cartesianj:

X = +0,58725272, ‘ X = -0.82890608

y = +0.84923499, § = +0.56396878
z = -0.05068537, z = +0,01219124

Here, %, y, and z are in units of earth radii (6378.166 kilometers), and X, y, and
z in units of earth radii per canonical unit of ti:ne (806.812 seconds).
Apogee height = 736.00 kilometers
Perigee height = 205.60 kilometers
Eccentricity = 0,0387
Inciination = 2.87 degrees.
Cannonball:
Mass m = 362.87392 kgm.
Projected Area A = 3423.6195 cm?
Drag Coefficler* T, = 2.1
Initial Epoch: August 7, 1971, 0 hours, 20 minutes.

Initial Conditions (Inertial Cartesian):

x = -0.9428339, x = -0,26977565
y = -0.28161829, y =-0,40945775
z = +0,28038380, z ==1,0092100

‘Apogee height = 1957.20 kilometers

Perigee height = 130.16 kilometers
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Eccentricity = 0.1230
Inclination = 82,00 degrees.

In both cases, the boundary values of the atmospheric density profile

given by p, are taken from a stacic model, namely, the 1966 U. S. Standsed

Air Force Supplements., The profiles used here inciude a Spring-Fall
model with an 1100 degree exospheric temperature, a Winter, 800 degree
model, and a Summer 1000 degree model. While these profiles are
adequate if chosen carefully, it is felt that a somewhat more sophisticated and
dynamic model such ag given by Jacchia (Reference 8) would not only improve
results but also make them more reliable.
Figure 1, shows the variatiou over one orbital period (from time of in-
sertion) of the semi~-major axis, eccentricity, and (5 2 + £3) respectively for
San Marco—-2. Here, a 0 and e, are taken to be the initial values of these
parameters. For the semi major axis, w2 have initially a secular decrease of
108 parts in 10° per revolution, with a periodic variation superimposed, of about
25 parts in 10 ¢ with the orbital period. The eccentricity shows a secular de-
crease of approximately 97 parts in 10° per revolution, and a periodic variation
superimposed on it with an amplitude of about 22 x 10-%, with the orbital period.
Figure 1 shows that (5, + ;) shifts back and forth b+ * out 8.3 seconds. Figure 2
is a similar graph for Cannonball. It is seen that the variations for a and e
here are somewhat larger than for San Marco-2 while the shift of (3, + 5,) is

cousiderably less. This behavior is what one would expect considering the dif-

ferences in the orbits.
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Figures 3 and 4 are graphs of semi-major axis versus time (days from in-
sertion), for San Marco-2 and Cannonball during an actual lifetime study for the
two satellites. The circles are those values of a, predicted by the BMW theory
using only the initial conditions given above, while the crosses indicate those
arcs of data supplied by orbit improvement routines utilizing tracking or ob-
servational data to update the orbital elements. The orbital improvements were
necessita’‘ed by the rapid deterioration of tse orbital parameter quality due to
inaccurate force modeling (particularly air resistance accelerations) in the
equations of motion. The accepted date of re-entry inte the earth's atmosphere
for San Marco-2 was on October 14, 1967 at approximately 13 hours. Thus, the
total lifetime was about 171 days. The BMW program computed a lifetime of
165 days, for a re-entry on October 8, 1967. Cannonball's re-entry date was

approximately January 28, 1972, a lifetime of about 173 days. BMW computed

170 days. In these two cases, the program evaluated the limits of the variational

equations for values of the eccentric anomaly corresponding to five day intervals.

This was done so as to allow the BMW program {o compare at intermediate
points, its values for seinl-major axis with the observed ones. I actual prac-

tice, these limits would be evaluated for those values of eccentric anomaly

corresponding to those regions of an orbit over which a fit of the density variation

remained fixed. 1Jsing a change in perigee height criterion (preselected at 1 kin),

results from Cannonball show that the first region is the first 65 days, the

second is the next 55 days, and so on, until within the last month of life the regions
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aré only of 5 day durafions. As a.result, the entire ephemeris is computed
rapidly. Using the IBM 360/91 electronic digital computer, the cémplete San
Marco~2 and Cannonball eﬁhcmerides computed at 5 day intervzls were exe-
cuted in less than 18 seconds of computer CPU time.

‘These results show that the BMW program was within 4 percent of the
"true' lifetimes of both satellites, despite the fact that Cannonhall had a re-
lativelj high eccentricity and low perigee. In addition, it must be pointed out
that the initial conditions used in the program were obiained from orbit im-~

provement routines othe_r than the Vinti Orbit Determination System, since this
was the only data available. To be more consistent, and to improve accuracy,
one should utilize, if possible, only those initial or epoch values obtained from

the Vinti Orbit Determination System (Reference 9, 10).

In spite of the startling success with San Marco-2 and Cannonball, improve-

ments to the present BMW computer program are being considered. Prime
among these is the ircorporation of a dynamic model atmospheric density pro-
file suchas Jdacchia's. Asis weli kmown a slight miscalculation in the exospheric
temperature for a static model would drastically alter the resulting density
profile, and consequently, the computed ephemeris of the satellite.

The distinct advantage of the BMW method over numerical integrétion tech~-
niques is that being analytic or closed form, it is not subject to large error .
accumulation due to roundoff and truncation. In addition, an entire ephemeris
can be obtained in a mafter of a fe.x;v seconds on present gersration coﬁpumrs,

while such a task might be prohibitive with a numerical integraticn.
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With the atmospheric profile git en by (5), exnression (11) with p = 0 could

be expressed in terms of Bessel functions; for example,

-1- J exp (c cos E) cos™ EdE = J (<) (n=0)

"
0

.Tl(c) (n = 1)

It

2)

To®) -1 I (@

and so forth. The disadvantage here, besides the limited step size over which
to perform the summation, is in the difficulty of handling interraediate points
within the limits. A Pessel function approach would appear to be better em-
ployed in a study of atmospheric density inference from calculations of the
period decrement,

King-Hele (Reference 6) has studied the contraction of orbits in a closed
form manner. Four situations are considered:

1. Normal e, Phase 1: approx. 0,02<e<0.2 (3 < (ae/Hp) < 30 approx.)

2. Normal e, Phase 2: 0<e<0.02 approx. (0 < (ae/H,) < 3)

3. Circular orbits: e =0 (ae/H, = 0).

4. High eccentricity: ez 0.2 (ae/Hp 2 30 approx.).
It is felt that the regions covered by the oquations of motion in these four cases

are also covered by the BMW theory. Even though a static model atmosphere
profile was used in the calculations, BMW does have the latitude of utilizing a
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density profile such as the Jacchia model. In addition, the reference orbit is
not an exact ellipse, but the Vinti orbit. As a result, it is felt that the BMW

method has contributed to the program for calculating both accurately and rapidly,

the orbits of satellifes experiencing aerodynamic drag.

At the present time, the Vinti differential correction algorithm (Reference 10)
employing a classical weighted least squares technique is being appropriately
modified to accommeodate the augmented force model, The bulk of the imple~
mentation requires the reformulation of the partial derivatives {3y, /aq’.(to)}
to reflect air drag where {y,} are tracking observables and {q‘.(to)} are the
set of "epoch" Vinti orbital elements and an atmospheric parameter iteratively
estimated by the differential correction technique. It.appears that complete
analyticity can be retained for these partial derivative expressions, thur merging
the theoretical developments presented here with the practical application of

orbit estimation. This work will be forthcoming in a future report.
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Static ATM Density

RHO

DIFF,

s ARt

0,205000000000D 03
0,206000000000D 03
0.207000000000D 03
0.208000000000D 03
0.2096950000000D 03
0,210000000000D 03
0.211000000000D 03
0,212000000000D 02
0.21300000000UD ©3
0,214000000000D 03

0.215000000000D 03

0.216000000000D 03

0.217000000000D 03
0.21800000000CD 03
0.219000000000D 03
0.220000000000D 03
0,221000000000D 03
0.222001000000D 03
0,223000060000D 03
0.228000000000D 03
0.233000000000D 03
0.237000000000D €3
0.245000000000D 03
0.250000000000D 03
0.270000000000D 03
0.279000000000D 03
0.285000000000D 03
0.293000000000D 03
0.3420000000006D 03
0.410C00000000D 03
0.480000000000D 03
0.550000000000D 03

0.65000C000000D 03

A 0-.5(‘)10608026330 03
0.292581857391D 03
0.284373995477D 03
0.276427541284D 03
0.268733:93909D 03
0.261282040805D 03
0.254065482185D 03
0.247075276161D 03
0.240303494560D 03
0.233742515394D 03
0.227385005955D 03
0.221223830490D 03
0.215252488448D 03
0.209464193246D 03
0:203852741559]’) 03
0.198412107074D 03
0.133136480719D 03
0.188020271318D 03
0.183958096672D 03
0,156242633526D 03
0.141611860377D 03
0.128303246660D 03
0.105648314722D 03
0.9375586310738D 02
0.590301268805D (2
0.482902323517D 02
0.423415114719D 02
0.313821645875D 02
0,134720611316D 02
0,398871539430D 01
0,129181633981D 01
0.449473286944D 00
0,1]2075750808D 00

0.301060802633D 03
0.292581357391D 03
0.284373956992D 03
0.276427541284D 03
0.262733129768D 03
0.261281906416D 03
0.254065482185D 03
0.247075072937D 03
0.240302827238D 03
0.233741217168D 03
0.,227383376171D 03
0.2212.,2099643D 03
0.215250815844D 03
0.209463097141D 03
0.203852741559D 03
0.198417301338D 03
0.193156793127D 03
0.1380€4945792D 03

0.183135719948D 03

0.156564335714D 03
0.1415G8571597D 03
0.128203948660D 03
©.105642771638D 03
0.037487761412D 02
0.,590233812922D 02
0.482387020943D 02
0.423456469834D 02
0.314306093484D 02
0.13471275¢807D 02
0.408£49712729D 61
0.129159554315D 01
0.453450297264D 00
0.112756896810D Q0

0.0
0.113686837722D-12
0.384845234862D-04
0.113686837722D-12
0.701411933051D-04
0.134389794596D-03
0.213162820728D-13
0.203224048809D-03
0.667321502970D- 03
0.119822619084D-02
0.363178351055D-02
0.183084742385D-02
0.168260392789D-02
0.109610524396D-02
0.248689957516D-13

-0.519426438754D-02

-0.203124082286D-01

-0.446744726403D-01

-0.776232757051D-01

-0.421702188640D 00
0.331878055081D-02
0.284217094304D-13

0.554308315159D-02

0.285493260362D-02
0.674558833808D-02
0.530257381655D-03
-0.413552152309D-02
-0.484447609329D-01
0.785150904546D-03
-0.957é173299490-01
0.221396651137D-03
-0,397701031021D-02
-0.68!:146005 936D-03
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ARRAY (i,1) = ARRAY (J,1)
ARRAY (1,2) = ARRAY (J,2)
ARRAY (1,3) = ARRAY (J,3)
ARRAY (1,4) = ARRAY (J,4)
ARRAY (1,5) = ARRAY (4,5)

Figure A-1 (continued)
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APPENDIX

DEVELOPMENT OF VARIATIONAL EQUATION CONSTANTS

For k=1, 2, ..., 6; the genecal expression for the change in the Vinti

orbital elements due to atmospheric drag between Lhe arbitrary limits E¥, E} is

given by:
n-1 x .
i+l
Aq, = E m.,. j {t,,, exp {dhl E]}d(‘x_u(E)
]:0 x_j
n~1 ' gﬁ_xj
+ M onj {t2n-j exp [dzn-j El} de(E)
"5_-'5' 2Mex . )
= j+l

(A-1)

E; mod 27
%* *
+ J ¢ exp [d} E] dG, (E)
*£

. - R AR USRS
n
+J ~t} exp [d} E] dG, (E)

E;mod 27 T
.Wit'hout loss of generality, assume that the fitting process is performed over
the interval [vu,7] {.e.

(0= xXg <Xy eX <X g <K =T

the coefficients t y are expressed by

PO

3k Qm&ﬁ%ﬁmﬂﬁm&iﬁﬂﬁm@\iéLwewi&\'\*\wxié"\.wm}‘J~t b e
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tp=cy [1+b(L, Uyx? (cos B, = cos E)?] (£ =1, 2+ n) (A-2) i

where c; is a previously defined fitted parameter in the interval Iolxp_,, x4

£=1,2,...n; x=ae. From symmetry considerations define

Xy £ =27 -xp (A-3)

Doy = (7= xp, 27 = xg_4) (A-4)

tn-fey = Cp exp(2mdp) [1+1(L, U) x? (cos E - cos E1£=1,2 ...n (A-5) \

dzat = - 44 (A-6)

C'Zn-‘£+l =g (A_7)

[
) OIS PRI SRS N W)

where d is the other previously defined, subinterval dependent, fitted parameter,

The remainder of this appendix shows the procedure utilized to derive the
values of the non negative integer multiplicity factors mg m_ p £=1,2,...m;

the value £, an integer between 0, 2r - 2; the value o1 7, an integer batween

A

1, 2n - 1; and (t}, t;) which may be (¢, t ), (t;,, t ) (te t)), OF (tg, t. ) depending

upon whether EY mod 2+ and E* mod 2, are less than or equal to or greater
1 2

than », for arbitrary -E':. E; and for differant modes of operation of the orbit

S A Tt B B et s 2 Bk T b e B v
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program. Prior to defining this procedure, consider the following definitions

concerning {A) modes of operation of the Vintl orbit generator program, (B)

integratior intervals of the variational equations, and (C) Fortran variable

definitions.

(a)

(B)

Mode 1

The Vinti orbit generator program is operating in mode I when the time

span of the variational equation intogration [or implicitly, the integration
interval (E’:,E;‘ )] is sufficiently smail so that there is not a complete iitting
subinterval imbedded between the integration limits. Modo I will be the |
dominant mode for definitive ephemerides or an ephemeris computed o support
a differential correction.

Mode I

The Vintl orbit generator is operating in mode I when the time span of
variational integration _bas one or more imbedded fitting subintervals be~
tween the limits cf variational equation integration. This mode will be
utilized in lifetime studies when large intervals of iatsgration will be per-
formed. Note that mode II implies the assumption of a valid fit (or x =

ae constant) over large periods of time than does mode I where new fits will
be performed as {frequently as ig required,

Class I Interval

A class I interval 18 an interval such that both boundary poirts are adjacent

grid points of the mesh XX peees X o

FER
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Class If Interval

A class II interval is an interval such that one boundary point of the interval

is a point x; of the mesh X, X, + .+ X, While the other boundary point is a

non mesh point between

X; and Xiar

(C) Fortran Variable Definitions

Fortran Variables Mathematical Description
- *
.E1 E}
’ *
E2 E;
NOINTV | 2n
/1=2.m+1 c, toc
2 n
OINTV
COEFF(I.D ¥ =1 —-—2——+2. €., tocy,
1=
NOINTV + 1
:2.-’-‘1—(-)-:51\-‘—11.41 dl tod“.
NOINTV ' .
J=2 -——2—-1'.2. dnd t°d2n
I=
h@OINTV +1
J:3 (I:l. NOINTV-}-I Xo, xl, "'xzn ’

A e o e vt 4 mtar L

ik ke s}

i
Vo
AN,



ARRAY (I, J)

I:lﬁj:3 Oorl

J:l xf
J=2 E;mod2-n

Oor 1

ot
T
L)
A
[
11
w

i J=1 Xogr Xyqo **"s Xo g
I = 3, NOINTV ; 2 : o
' J=2  xq %5 00t Xy,

"
w
3

o

po3, NoLNTY

-
i i

(4] L.

& n
e &

1=-NOIY 2, NOINTV 4+ 24 J=4 <)y
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The following describes the subtasks associa;ted with defining the full set of
integration parameters in (A-1), The detailed logic is presenied in the fiow-
chart given in Fiéur:e A-1.

(A This algorithm will test whether E’l* and E: are within the samo sub-
interval, will store the proper interval of integration and associated constants
into ARRAY, and exit. This simplified logic is mest useful in Mode I orbit
generations.,

(® This algorithm defines the Class II intervals associated with the arbi-
trary limits E’;‘, E%, (i.e. [X,,E} mod27] and (E] mod 20, x_]) and stores them
and the associated constants into ARRAY.

@ This algorithm checks to see if any of the Class Il intervals are near
7/2 or 2 n/2 in order to avoid underflow difficulties during evaluation of the
integrals.

(D To assist the task of deleting unnecessary computations in Mode I gen~
erations, this algorithm establishes the necessary intervals and associated con-
stants when ET and EJ are in adjacent subintervals and in the same multiple
of 27, .

(® This logic stores the entire set of ClassI subintervals and associated
constants into ARRAY and checks the Class II subintervals for negligible length.
If cuch a Class Il interval is found, it is elin.ated from consideration. An

arbitrary interval length of 1 x 17 is the criterion presently used.
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@ This algoritbm defines my, m 4. Itis predominantly used in Mode I

orbit generations.

@©  This algorithm redefines ARRAY to eliminate Class] intervals with a

multiplicity factor of zero and Class II intervals whose multiplicity factor has

been reset from one to zero by (E) when its length is negligible.
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